The development of movement system of the second six-legged robot PTE UNIMA

Authors

  • Calvin E J Mamahit Department of Electrical Engineering Education, Faculty of Engineering, Universitas Negeri Manado, INDONESIA
  • Mildes Sanggola Department of Electrical Engineering Education, Faculty of Engineering, Universitas Negeri Manado, INDONESIA

DOI:

https://doi.org/10.24036/jptk.v4i4.21323

Keywords:

Hexapod, Motion system of a legged robot, Robot development, Tripod gait

Abstract

Engineering technology in robotics for the present era is no longer new, especially in high education, marked by Indonesian robot contests routinely held annually by the national achievement center. The participants in this event are groups of students from all higher education institutions spread throughout Indonesia. The development of robotics technology is now faster to spur individuals and students to compete to conduct research and development in robotics. The study aims to develop a six-legged robotic motion system or so-called hexapod. The research was conducted using the Addie model research method consisting of five stages, namely, analyze stage to analyze the needs of the development of the robotic motion system and analysis of the needs of tools and materials to be used. The design stage of designing the mechanical structure of the robot both in terms of hardware and in terms of robot software, the development stage of developing a six-legged robot's motion system to be more stable and more efficient in moving, the implementation stage is a test stage of the robot's motion system that has been developed. The evaluation stage is the last stage of this development research; at this stage, the evaluation is done to ensure the robot's motion system is feasible to use.

Downloads

Download data is not yet available.

References

D., & Wahyudi, R. (2015). Kontrol Kecepatan Robot Hexapod Pemadam Api menggunakan Metoda Logika Fuzzy. Jurnal Nasional Teknik Elektro, 4(2), 227. https://doi.org/10.25077/jnte.v4n2.170.2015

Akhtaruzzaman, M., Bt Samsuddin, N. I., Bt Umar, N., & Rahman, M. (2009). Design and development of a wall climbing robot and its control system. ICCIT 2009 - Proceedings of 2009 12th International Conference on Computer and Information Technology, 309–313. https://doi.org/10.1109/ICCIT.2009.5407120

Brandenbourger, M., Locsin, X., Lerner, E., & Coulais, C. (2019). Non-reciprocal robotic metamaterials. Nature Communications, 10(1), 1–8. https://doi.org/10.1038/s41467-019-12599-3

Budiharto, W. (2006). Belajar Sendiri: Membuat Robot Cerdas. Elex Media Komputindo. https://books.google.com/books?hl=en&lr=&id=_Ugs0C6egWsC&oi=fnd&pg=PR7&dq=sumber+daya+robotik+di+bidang+industri&ots=jPUjjSNKye&sig=_b1LFMhXfEzkf3BjZ-iDElcpNog

Burgard, W., Fox, D., & Hennig, D. (1997). Fast grid-based position tracking for mobile robots. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 1303, 289–300. https://doi.org/10.1007/3540634932_23

Chen, J., Gao, F., Huang, C., & Zhao, J. (2019). Whole-body motion planning for a six-legged robot walking on rugged terrain. Applied Sciences (Switzerland), 9(24), 11–13. https://doi.org/10.3390/app9245284

Darwison, Rusydi, I., & Imran, I. H. (2011). Perancangan dan Pembuatan Sistem Kontrol Kecepatan Servomotor Continous Parallax dengan PID. Teknika, 1. https://ft.unand.ac.id/profil/program/riset/publikasi

Devjanin, E. A., Gurfinkel, V. S., Gurfinkel, E. V., Kartashev, V. A., Lensky, A. V., Shneider, A. Y., & Shtilman, L. G. (1983). The six-legged walking robot capable of terrain adaptation. Mechanism and Machine Theory, 18(4), 257–260. https://doi.org/10.1016/0094-114X(83)90114-3

Halim, S. (2007). Merancang Mobile Robot Pembawa Objek Menggunakan OOPic-R. In PT Elex Media Komputindo. PT Elex Media Komputindo. https://books.google.co.id/books?id=_35D5i96W2IC&pg=PR4&lpg=PR4&dq=Halim,+Sandy.+2007.+“Merancang+Mobile+Robot+Pembawa+Objek+Menggunakan+OOPic-R”+PT+Elex+Media+Komputindo,+Jakarta&source=bl&ots=_4Xp9Rq8bG&sig=ACfU3U0txpEfIHUtHr1eQoawsAFmblyX7g&hl=id&sa=X&

Kadir, A. (2013). Panduan Praktis Memplajari Aplikasi Mikrokontroler dan Pemogramannya Menggunakan Arduino. In Andi Komputindo (Vol. 8, Issue 1). Andi Offset.

Maulana, R. H. (n.d.). Penerapan Behavior Based Robotic Pada Sistem Navigasi Dan Kontrol Robot Soccer.

Molenda, M. (2003). In search of the elusive ADDIE model. Performance Improvement, 42(5), 34–36. https://doi.org/10.1002/pfi.4930420508

Puspresnas. (2019). Ajang Talenta Dikti. Puspresnas Kemdikbud. https://pusatprestasinasional.kemdikbud.go.id/jenjang/dikti

Ramadhan, M. F. (2017). Perancangan Kontrol Stabilitas Hexapod Robot Menggunakan Metode Neuro-Fuzzy. http://repository.its.ac.id/44113/

Sethi, S. P., Sriskandarajah, C., Sorger, G., Blazewicz, J., & Kubiak, W. (1992). Sequencing of parts and robot moves in a robotic cell. International Journal of Flexible Manufacturing Systems, 4(3–4), 331–358. https://doi.org/10.1007/BF01324886

Soyguder, S., & Alli, H. (2007). Design and prototype of a six-legged walking insect robot. Industrial Robot, 34(5), 412–422. https://doi.org/10.1108/01439910710774412

Utama, A. W. T. (2018). Pengembangan Sistem Robot Berkaki Enam(Hexapod) Menggunakan Metode Behavior Based Control pada Kontes Robot Pemadam Api Berkaki.

Zhang, J., Wang, Y., & Xiong, R. (2016). Industrial robot programming by demonstration. ICARM 2016 - 2016 International Conference on Advanced Robotics and Mechatronics, 300–305. https://doi.org/10.1109/ICARM.2016.7606936

Downloads

Published

2021-11-30

How to Cite

Mamahit, C. E. J., & Sanggola, M. (2021). The development of movement system of the second six-legged robot PTE UNIMA. Jurnal Pendidikan Teknologi Kejuruan, 4(4), 130–139. https://doi.org/10.24036/jptk.v4i4.21323