

# Health index analysis on asset management and the influence of electricity and environmental safety aspects on overhead transmission line 150 kV Anyer – Asahimas

# Muhammad Saidul Murtado<sup>\*</sup> and Rudy Setiabudy

Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, INDONESIA

\*Corresponding author: <u>muhammad.saidul@ui.ac.id</u>

https://doi.org/10.24036/jptk.v5i4.29823

**Abstract**—The availability and reliability of electrical energy has become the backbone of society, so periodic maintenance needs to be carried out to avoid short breakdowns and technical malfunctions as well as to improve electrical and environmental safety. Overhead transmission line is an important part of the transmission network and their health status is an important foundation for ensuring the reliable supply of electricity to the power grid. The health index (HI) is a value that reflects the health status of high-voltage transmission lines obtained by combining the normalization of component ratings on certain parameters and calculation methods. This study shows that the condition of assets, electricity and the environment have an effect on determining the soundness index of the Anyer-Asahimas 150 kV overhead transmission line and can be a guide for its maintenance. The final health index value shows 92.8% meaning that the transmission is not only safe in terms of equipment but also safe in terms of electrical and environmental safety aspects.

Keyword: Health Index, Overhead Transmission Line, Asset Management, Environmental, Electricity Safety

# I. INTRODUCTION

Transmission lines have become the backbone of the power system landscape. Maintaining it, extending the useful life of the line, improving the transmission ability of electrical energy, preventing failure, and ensuring the safety of employees and everyone are at the forefront of transmission line research and development (P. Thongchai et al, 2013). High voltage (HV) transmission lines are important for power transmission systems. HV transmission lines experience a decrease in quality over the period of use due to normal operating conditions and abnormal conditions such as the effects of lightning, corrosion due to pollution, and others. Failure of the HV transmission line and its components can affect the stability of the electric power system. Therefore, the transmission system needs to be properly maintained (I. Yongyee et al, 2018).

The health index (HI) of the overhead transmission line is a value that represents the health status of the overhead transmission line. It can be obtained by complex logic and mathematical operations based on key features. The health index

has strong logical characteristics and is continuous in time. It can be used to determine if an overhead transmission line needs maintenance, and estimate the remaining life of an overhead transmission line (Y. Liu et al., 2019).

The overhead transmission line (OHL) 150 kV Anyer - Asahimas which has been in operation since April 2015 where the transmission line cuts the existing OHL's New Menes - Asahimas which has been in operation since June 1983. The life span of the SUTT project is generally between 50-80 years, but that depending on various conditions such as materials, quality of construction, climate, quality of maintenance, failure of HV transmission lines and their components can affect the stability of the power system (H. Manninen et al, 2018).

Therefore, the transmission system needs to be maintained properly. In this study, a method for assessing the condition of high-voltage transmission lines is proposed which will find out the condition of OHL, including the effect of the installation on electricity safety and the environment. The purpose of this study is to determine the conditions of the 150 kV Anyer - Asahimas high voltage overhead transmission line (OHL) installation and can also be an indicator for determining effective maintenance planning for the transmission line system.

#### **II. METHODS**

#### A. Steps and flowcharts

In this study, there are stages of designing highvoltage overhead transmission line assessment based on the Health Index method. The initial stage of this research is to determine the pattern of assessment of the research health index. The next stage is to determine the items and sub-items whose health index will be assessed, where at this stage it is also determined how to test each of these items and subitems. The next step is to determine the standard of comparison from the test data that has been done. Standards are obtained from IEC Standards, IEEE Standards, PLN Standards and Electrical Standards that apply in Indonesia.





The next stage is the weighting and assessment stage where at this stage each item and sub item has been determined how to carry out the test and the standard is given the appropriate weight. The criteria obtained are in accordance with the first stage in this study. In the final stage, an analysis of the health index value and the total health index of each condition category was.

# **B.** Transmission line overhead components and sub-components

Before conducting a health index analysis, it is necessary to determine its components and subcomponents. According to Yongyee, high voltage transmission line components are classified into eight groups namely conductors, conductor accessories, insulators, steel structures, foundations, lightning rods, tower accessories and right of way. According to Thongchai, the design criteria for an overhead transmission line system can be categorized into four components: i) concrete piles, ii) insulators, iii) conductors and iv) grounding/lightning systems (I. Yongyee, 2018).

In this study the components and subcomponents of high-voltage overhead transmission line were referred to from previous studies and several items were added which were referred to from the Regulation of the Minister of Energy and Mineral Resources of the republic of Indonesia No. 12 of 2021. So that in this study it is proposed that the transmission components and sub-components be categorized into three parts consisting of asset conditions. electricity safetv conditions and environmental conditions (Ministry of Energy & Mineral Resources, 2021).

Table 1. Components and sub-components on asset condition

| Component       | Sub - Component           |
|-----------------|---------------------------|
|                 | Stub                      |
|                 | Chimney Structure /member |
| 1.1 Tower       | /brasing                  |
|                 | Ladder/climbing bolt      |
|                 | Tower alignment           |
| 1.2 Conductor   | Conductor                 |
| 1.3 Insulator   | Insulator                 |
|                 | Vibration Damper          |
| 1 4 4           | Spacer                    |
| 1.4 Accessories | Suspension set            |
|                 | Tension set               |

Table 2. Components and sub-components onElectricity Safety Conditions

| Electricity Safety Conditions    |                           |  |  |
|----------------------------------|---------------------------|--|--|
| Component                        | Sub - Component           |  |  |
| 2.1 Sagging                      | Sagging                   |  |  |
| 2.2. Clearance                   | Vertical                  |  |  |
| 2.2. Clearance                   | Horizontal                |  |  |
| 2.3. Electrical safety equipment | Danger Sign               |  |  |
|                                  | Phase Plate               |  |  |
|                                  | Number Plate              |  |  |
|                                  | Anti-climbing device      |  |  |
|                                  | (ACD)                     |  |  |
| 2.4 Grounding                    | Mounting System           |  |  |
| System                           | Earth Resistance          |  |  |
| 2.5 Measurement                  |                           |  |  |
| of temperature after             | Temperature after loading |  |  |
| loading                          |                           |  |  |

 
 Table 3. Components and sub-components on Environmental conditions

| <b>Environmental conditions</b> |                |  |  |
|---------------------------------|----------------|--|--|
| Component Sub - Component       |                |  |  |
| 3.1 Noise level                 | Noise level    |  |  |
| 3.2 Electromagnetic             | Magnetic field |  |  |
| field level                     | Electric field |  |  |

#### C. Inspection methods and test results criteria

Determine the standard of test results to be determined as the criteria of the condition ratio. The standard of the condition ratio criterion was obtained from previous research and based on PT. PLN (Persero) SPLN T6.003-2: 2021 regarding the Commissioning of High Voltage and Extra High Voltage overhead transmission line (State Electricity Company, 2021).

In the inspection method to provide a different value for the condition of the sub-components of high-voltage overhead transmission line in the 3 groups of categories previously mentioned. Where line patrol officers must investigate the condition of the transmission line and complete detailed inspections and make repairs later on an ongoing basis. In this study, investigations on the subcomponents of each group were carried out during the periodic maintenance of the transmission line.

Values for condition parameters are determined using condition criteria. The condition criterion is the scale used to determine asset values for certain parameters (Y. Tsimberg et al, 2014). The transmission line can be classified as n components, each of which has a mode value Mi. Physical condition can be assessed in three levels: G (Good, condition value C = 1), N (Normal, condition value C = 0.5, and P (Poor, condition value C = 0) (P. Thongchai et al, 2003)

 
 Table 4. Inspection method and condition criterion on asset conditions

| Asset Condition                             |                      |                         |                            |                |  |
|---------------------------------------------|----------------------|-------------------------|----------------------------|----------------|--|
| Sub -                                       | Inspection           | The condition criterion |                            |                |  |
| Component                                   | Method               | G                       | Ν                          | Р              |  |
| Stub                                        | Visual<br>Inspection | Norma<br>l              | There are<br>drawback<br>s | Abnormal       |  |
| Chimney<br>Structure<br>/member<br>/brasing | Visual<br>Inspection | Norma<br>1              | There are<br>drawback<br>s | Abnormal       |  |
| Ladder/climbi<br>ng bolt                    | Visual<br>Inspection | Norma<br>l              | There are<br>drawback<br>s | Abnormal       |  |
| Tower<br>alignment                          | Visual<br>Inspection | Norma<br>l              | There are<br>drawback<br>s | Abnormal       |  |
| Conductor                                   | Visual<br>Inspection | Norma<br>1              | There are<br>drawback<br>s | hack/bloo<br>m |  |
| Insulator                                   | Visual<br>Inspection | Norma<br>1              | There are<br>drawback<br>s | Abnormal       |  |
| Vibration<br>Damper                         | Visual<br>Inspection | Norma<br>1              | There are<br>drawback<br>s | Abnormal       |  |
| Spacer                                      | Visual<br>Inspection | Norma<br>1              | There are<br>drawback<br>s | Abnormal       |  |
| Suspension<br>set                           | Visual<br>Inspection | Norma<br>1              | There are<br>drawback<br>s | Abnormal       |  |
| Tension set                                 | Visual<br>Inspection | Norma<br>1              | There are<br>drawback<br>s | Abnormal       |  |

#### Table 5. Inspection method and condition criterion on electricity safety conditions

| Electricity Safety Conditions        |                      |                         |                     |          |
|--------------------------------------|----------------------|-------------------------|---------------------|----------|
| Sub -                                | Inspection           | The condition criterion |                     |          |
| Component                            | Method               | G                       | Ν                   | Р        |
| Sagging                              | Visual<br>Inspection | Normal                  |                     | Abnormal |
| Vertical                             | Clearance<br>Length  | $\geq 8,5$<br>m         | 5,0-8,4 m           | < 5,0 m  |
| Horizontal                           | Clearance<br>Length  | $\geq 10,0$<br>m        | 9,11-9,9<br>m       | < 9,11 m |
| Danger Sign                          | Visual<br>Inspection | Normal                  | Dirty/<br>unclear   | Abnormal |
| Phase Plate                          | Visual<br>Inspection | Normal                  | Dirty/<br>unclear   | Abnormal |
| Number<br>Plate                      | Visual<br>Inspection | Normal                  | Dirty/<br>unclear   | Abnormal |
| Anti-<br>climbing<br>device<br>(ACD) | Visual<br>Inspection | Normal                  | There are drawbacks | Abnormal |
| Mounting<br>System                   | Visual<br>Inspection | Normal                  | There are drawbacks | Abnormal |

| Electricity Safety Conditions |                                                                                                  |      |                         |        |  |
|-------------------------------|--------------------------------------------------------------------------------------------------|------|-------------------------|--------|--|
| Sub -                         | ub - Inspection                                                                                  |      | The condition criterion |        |  |
| Component                     | Method                                                                                           | G    | Ν                       | Р      |  |
| Earth<br>Resistance           | Measurement<br>of grounding<br>resistance                                                        | ≤3 Ω | ≤10 Ω                   | >10 Ω  |  |
| Temperature<br>after loading  | Measures the<br>difference<br>between the<br>measured<br>point and the<br>ambient<br>temperature | ≤5°C | 6-10° C.                | > 10°C |  |

 
 Table 6. Inspection method and condition criterion on Environmental conditions

| <b>Environmental conditions</b> |                                  |                                   |               |       |
|---------------------------------|----------------------------------|-----------------------------------|---------------|-------|
| Sub -                           | Inspection                       | Inspection The condition criterio |               |       |
| Component                       | Method                           | G                                 | Ν             | Р     |
| Noise level                     | Noise level                      | $\leq 60$                         | 60-70         | > 70  |
| Noise level                     | measurement                      | dB                                | dB            | dB    |
| Magnetic<br>field               | Magnetic<br>field<br>measurement | 0,1<br>mT                         | 0,1 - 1<br>mT | >1 mT |
| Electr.ic                       | Electric field                   | 5                                 | 5-10          | > 10  |
| field                           | measurement                      | kV/m                              | kV/m          | kV/m  |

#### D. Weighting and scoring

In this study, on the condition of the assets, the weighting is calculated based on the portion of the initial construction cost of the high-voltage transmission line. According to Manninen, values for weighting factors calculated on the proportion of component costs selected for high-voltage overhead lines are generally based on Estonian practice (country where transmission lines are built) (H. Manninen et al, 2018). This provides an opportunity to estimate the cost of replacing the overhead transmission components as they are and therefore not focus too much on each component separately. The weight of component asset of condition is tower 66.1%, Conductor 21.8%, insulator 4.1% and Accessories 8.1%. As for the conditions of electricity safety and environmental conditions, the weighting is divided equally for each component parameter because it is assumed that each part has the same effect on electricity safety and on environmental matters.

The Health Index for each component, HI can be calculated as in equation (1).

$$HI = \sum_{i=1}^{m} I_i C_i \tag{1}$$

Where I is the item, C value is the condition, M value is the total number of items.

From each component where HI is calculated based on (1), the total health index (THI) can be determined by equation (2).

$$\%THI = \sum_{i=1}^{n} \frac{HI_i \times M_i}{100}$$
(2)

Where HI is the health index of the component M is the mode value n is the total number of components (P. Thongchai et al, 2013). From equation (2) HI shows the condition of each category. The relative range is in the form of a percentage of conditions where HI > 80% means good conditions that do not require maintenance or just regular maintenance, HI < 80% means conditions need to be repaired or material replaced.

Table 7. Proposed health index value

| % Total Health<br>Index Interval | Category | requirements                                         |
|----------------------------------|----------|------------------------------------------------------|
| 80 ≤HI≤100                       | Safe     | Normal<br>Maintenance                                |
| 50 ≤HI≤80                        | Alert    | Improve<br>Diagnostic Testing                        |
| 0.0 ≤HI≤50                       | Critical | Begin the Planning<br>Process for<br>Replace/Rebuild |

### **III. RESULTS**

Based on the weighting and scoring calculations that have been carried out on the Anyer - Asahimas overhead transmission line of 58 towers, the results are as follows.

 
 Table 8. Inspection method and condition criterion on asset conditions

| Sub -           | Item   | Condition | Condition |
|-----------------|--------|-----------|-----------|
| Component       | Score  | Ratio     | Score     |
| Stub            | 16.5%  | G         | 1.0       |
| Chimney         |        |           |           |
| Structure       | 16.5%  | G         | 1.0       |
| /member         | 10.570 | 0         | 1.0       |
| /brasing        |        |           |           |
| Ladder/climbing | 16.5%  | G         | 1.0       |
| bolt            | 101070 | C         | 110       |
| Tower           | 16.5%  | G         | 1.0       |
| alignment       |        |           |           |
| Conductor       | 21.8%  | G         | 1.0       |
| Insulator       | 4.1%   | G         | 1.0       |
| Vibration       | 2.00/  | C         | 1.0       |
| Damper          | 2.0%   | G         | 1.0       |
| Spacer          | 2.0%   | G         | 1.0       |
| Suspension      | 2.0%   | G         | 1.0       |
| Tension         | 2.0%   | G         | 1.0       |

The HI of asset condition obtained is 100% which indicates a safe transmission line.

| Table 9. Inspection method and condition criterion |
|----------------------------------------------------|
| on electricity safety conditions                   |

| Sub –                             | Item  | Condition | Condition |
|-----------------------------------|-------|-----------|-----------|
| Component                         | Score | Ratio     | Score     |
| Sagging                           | 10.0% | G         | 1.0       |
| Vertical                          | 10.0% | G         | 1.0       |
| Horizontal                        | 10.0% | G         | 1.0       |
| Danger Sign                       | 10.0% | G         | 1.0       |
| Phase Plate                       | 10.0% | G         | 1.0       |
| Number Plate                      | 10.0% | Ν         | 0.5       |
| Anti-<br>climbing<br>device (ACD) | 10.0% | G         | 1.0       |
| Mounting<br>System                | 10.0% | G         | 1.0       |
| Earth<br>Resistance               | 10.0% | G         | 1.0       |
| Temperature after loading         | 10.0% | G         | 1.0       |

The HI of electricity safety conditions obtained is 95% which indicates a safe transmission line.

 
 Table 10. Inspection method and condition criterion on Environmental conditions

| Sub -<br>Component | Item<br>Score | Condition<br>Ratio | Condition<br>Score |
|--------------------|---------------|--------------------|--------------------|
| Noise level        | 33.3%         | Ν                  | 0.5                |
| Magnetic<br>field  | 33.3%         | G                  | 1.0                |
| Electric field     | 33.3%         | G                  | 1.0                |

The HI of Environmental conditions obtained is 83.3% which indicates a safe transmission line. From the results of the health index for each condition category, it is known that then it is necessary to know the results of the effect of the condition of the transmission line assets on other categories of conditions

 
 Table 11. Effect of health index results on asset and electricity safety condition

| Category Group                | Mode<br>Score | HI  | Total<br>HI |
|-------------------------------|---------------|-----|-------------|
| Asset condition               | 50.0%         | 100 | 97.5%       |
| Electricity safety conditions | 50.0%         | 95  |             |

The effect of electrical safety conditions on asset conditions to the total health index shows a change to 97.5%

 Table 12. Effect of health index results on asset and

 Environmental conditions

| Category Group           | Mode<br>Score | HI   | Total<br>HI |
|--------------------------|---------------|------|-------------|
| Asset condition          | 50.0%         | 100  | 91.7%       |
| Environmental conditions | 50.0%         | 83.3 |             |

The effect of environmental conditions on asset conditions to the total health index shows a change to 91.7%.

Table 13. Effect of health index results on asset, electricity safety and Environmental conditions

| Category<br>Group             | Mode<br>Score | HI   | Total<br>HI |
|-------------------------------|---------------|------|-------------|
| Asset condition               | 33.3%         | 100  |             |
| Electricity safety conditions | 33.3%         | 95   | 92.8%       |
| Environmental conditions      | 33.3%         | 83.3 |             |

The effect of environmental conditions and electrical safety conditions on asset conditions to the total health index shows a change to 92.8%.

#### **IV. DISCUSSION**

From the results of the research that has been done, it is found that the results of the health index on the condition of the assets show a perfect value, which means that the physical condition of the installation still meets all eligibility criteria and standards for each of the main components of the overhead transmission line. whereas in the electricity safety condition it shows an HI value of 95% because there is a sub-component which show the condition of the N ratio indicating that it is not so perfect but is still classified as feasible to operate. Finally, in environmental conditions with an HI value of 83.3% because there is a sub-component that should have a more perfect value even though the current value meets the standard.

Furthermore, the health index value based on asset condition is combined with the HI value for electrical and environmental safety conditions to obtain a total value of 92.8%, which is decreased when compared to the previous total value. This decrease in the value of the health index reinforces the opinion that transmission installations that are safe from a physical point of view are not necessarily safe from an electrical and environmental safety point of view. However, the final results show that all air transmission channels are classified as safe.

#### **V. CONCLUSION**

The results of the research conducted show the effect of the health index value on the condition of assets in two other condition categories, namely electrical safety conditions and environmental conditions. There was a decrease in the total value of HI from 100% calculation based on asset condition only, to 97.5% due to the influence of electrical safety conditions. Furthermore, the total HI value becomes 92.8% if the two previous conditions are recalculated with environmental condition parameters. From this study it was concluded that the condition parameters in the form of assets, electricity safety and the environment can make the overhead transmission line health index assessment more specific dan can be stated that entire the overhead transmission line 150 kV Anyer - Asahimas is still classified as safe and feasible to operate. The results of this health index can also be an indicator for the next periodic maintenance with normal maintenance.

## REFERENCES

Liu, Y., Xv, J., Yuan, H. J. and Ma, Z. (2019). Health Assessment and Prediction of Overhead Line Based on Health Index. *IEEE Transactions on Industrial Electronics*, vol. 66, pp. 5546-5557, 2019.

- Yongyee, I., Suwanasri, C., Suwanasri, T. and Luejai, W. (2018). Condition Assessment in Transmission Line Asset for Maintenance Management. *International Electrical Engineering Congress (iEECON)*, pp. 1-4, doi: 10.1109/IEECON.2018.8712276.
- Thongchai, P., Pao-La-Or, P. and Kulworawanichpong, T. (2013). Condition based health index for overhead transmission line maintenance. *in Proc. 10th Int. Conf. Elect. Eng./Electron., Computer, Telecommun. Inf. Technol.*,Krabi, Thailand, pp. 1–4.
- Tsimberg, Y., Lotho, K., Dimnik, C., Wrathall, N. and Mogilevsky, A. (2014). Determining transmission line conductor condition and remaining life. *IEEE PES T&D Conference and Exposition*, pp. 1-5, doi: 10.1109/TDC.2014.6863242.
- Peraturan Menteri Energi dan Sumber Daya Mineral Republik Indonesia Nomor 12 Tahun 2021 tentang Klasifikasi, Kualifikasi, dan Sertifikasi Usaha Jasa Penunjang Tenaga Listrik.
- Standar PT. PLN (Perseo) SPLN T6.003-2, "Komisioning Saluran Tegangan Tinggi Dan Tegangan Ekstra Tinggi Bagian 2: Pengujian Komisioning Saluran Udara Tegangan Tinggi dan Tegangan Ekstra Tinggi". 2021
- Manninen, H., Kilter, J. and Landsberg, M. (2018). Advanced condition monitoring method for high voltage overhead lines based on visual inspection. *IEEE Power & Energy Society General Meeting (PESGM)*, pp. 1-5, doi: 10.1109/PESGM.2018.8586498.

© The Author(s) Published by Universitas Negeri Padang This is an open-access article under the: https://creativecommons.org/licenses/by/4.0